Cryogenic Energy Storage for Renewable Refrigeration and Power Supply

 

The first of its kind innovation action, focusing on Cryogenic Energy Storage (CES) and supported by Horizon 2020, CryoHub is approaching its end. A relevant project with the intriguing name CryoHub (Developing Cryogenic Energy Storage at Refrigerated Warehouses as an Interactive Hub to Integrate Renewable Energy in Industrial Food Refrigeration and to Enhance Power Grid Sustainability, which started on 1 April 2016, is now going to finish on 31 March 2021. CES is a known but still rather underdeveloped energy storage principle, where excessive or renewable power is used to liquefy and store a cryogenic gas. This liquid cryogen is then pumped and boiled at low temperatures to run turbines and produce electricity for either on-site use or feeding the power grid during peak demand periods. Unlike standalone CES systems generating power only, CryoHub is capable of working in a cogeneration mode to supply also cold to a refrigerated warehouse or both heat and cold to a food factory equipped with refrigerated facilities. Refrigerated food warehouses require large cooling capacities to maintain or reduce the temperature of food in a way which maximises product safety, quality and shelf life. Stored liquid cryogen is capable of providing part of the refrigerating demand in large storage warehouses or food factories, being thereby heated for the purposes of power generation. Integrating CES into food storage or processing facilities is a novel and attractive means for fostering the employment of Renewable Energy Sources (RES), revealing also a substantial potential to improve efficiency. In this context, CES and RES are mutually enabling technologies.

.

 

 

read the rest of the article here

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 691761.

Web design by Tribal Systems